Дроби в Древней Греции.

В Древней Греции арифметику – учение об общих свойствах чисел – отделяли от логистики – искусства исчисления. Греки считали, что дроби можно использовать только в логистике. Греки свободно оперировали всеми арифметическими действиями с дробями, но числами их не признавали. В греческих сочинениях по математике дробей не встречалось. Греческие ученые считали, что математика должна заниматься только целыми числами. Возиться с дробями они предоставляли купцам, ремесленникам, а также астрономам, землемерам, механикам и другому «черному люду». «Если ты захочешь делить единицу, математики высмеют тебя и не позволят это делать»,- писал основатель афинской академии Платон.

Но не все древнегреческие математики соглашались с Платоном. Так в трактате «Об измерении круга» Архимед употребляет дроби. С дробями свободно обращался и Герон Александрийский. Он подобно египтянам разбивает дробь на сумму основных дробей. Вместо 12\13 он пишет 1\2 + 1\3 + 1\13 + 1\78, вместо 5\12 пишет 1\3 + 1\12 и.т.п. Даже Пифагор, со священным трепетом относившийся к натуральным числам, создавая теорию музыкальной шкалы, связал основные музыкальные интервалы с дробями. Правда, самим понятием дроби Пифагор и его ученики не пользовались. Они позволяли себе говорить лишь об отношениях целых чисел.

Поскольку греки работали с обыкновенными дробями лишь эпизодически, они использовали различные обозначения. Герон и Диофант записывали дроби в алфавитной форме, причем числитель располагали под знаменателем. Для некоторых дробей применялись отдельные обозначения, например, для 1\2 - L′′, но в целом их алфавитная нумерация с трудом позволяла обозначать дроби.

Для единичных дробей применялась особая запись: знаменатель дроби сопровождался штрихом справа, числитель не писали. Например, в алфавитной системе означало 32, а ' – дробь 1\32. Встречаются такие записи обыкновенных дробей, в которых числитель со штрихом и дважды взятый знаменатель с двумя штрихами пишутся рядом в одной строке. Вот как записывал, например, Герон Александрийский дробь 3\4: .[5]

Недостатки греческих обозначений дробных чисел связано с тем, что слово «число» греки понимали как набор единиц, поэтому то, что мы теперь рассматриваем как единое рациональное число – дробь, – греки понимали как отношение двух целых чисел. Именно этим объясняется, почему обыкновенные дроби редко встречались в греческой арифметике. Предпочтение отдавалось либо дробям с единичным числителем, либо шестидесятиричным дробям. Областью, в которой практические вычисления испытывали величайшую потребность в точных дробях, была астрономия, а здесь вавилонская традиция была настолько сильна, что ее использовали все народы, включая Грецию.


8052168972107845.html
8052276352871740.html
    PR.RU™