Править] Математическое выражение Периодического закона

Предыдущая6789101112131415161718192021Следующая

Полноценное объяснение и понимание периодического изменения свойств элементов стало возможным только с развитием квантовой теории в начале XX века, которая рассматривает атомы как системы взаимодействующих элементарных частиц в рамках квантовой химии. Это позволяет получить полную картину и объяснить их свойства.[19] Однако, аналитическое решение уравнения Шредингера возможно только для простейших одноэлектронных атомов, численное решение является чрезвычайно сложной задачей, особенно для тяжёлых атомов, которая требует привлечения особого математического аппарата учитывающего многочисленные физические эффекты, например спин-орбитальное взаимодействие и релятивисткие поправки.

Рис. 11. Зависимость энергии ионизации атомов элементов p-блока от суммы всех p-электронов.

Тем не менее, на основе квантовой теории были развиты представлении о распределении электронов по оболочкам и подоболочкам (s, p, d и f, см. выше). В соответствии с этим в общепринятом варианте периодической системы, утверждённым Международным союзом теоретической и прикладной химии (IUPAC), элементы распределены по соответствующим (s, p, d и f) блокам [1].

При рассмотрении элементов по блокам можно получить периодические зависимости, существенно более чётко выраженные, чем на рисунках типа рис.1. Для этого нужно свойства элементов и их соединений рассматривать в зависимости от общего числа электронов, определяющих принадлежность атома к блоку. Для s-блока — это сумма всех s-электронов в атоме, для p-блока — это сумма p-электронов, и так далее.

Для иллюстрации на рис.11 показана зависимость энергии ионизации атомов элементов p-блока от суммы всех p-электронов в атоме.

Полученные зависимости настолько точны, что их можно описать уравнениями (см. Периодическая функция, Периодичность).

Изложенное предложено считать дальнейшим уточнением формулировки Периодического закона (для характеристики, от которой зависят свойства) в последовательности: атомный вес — заряд ядра — общее число электронов в атоме, устанавливающих принадлежность элемента к определённому блоку (Имянитов).

Электроотрицательность (χ) — фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле смещать к себе общие электронные пары.

Современное понятие об электроотрицательности атомов было введено американским химиком Л. Полингом. Л. Полинг использовал понятие электроотрицательности для объяснения того факта, что энергия гетероатомной связи A—B (A, B — символы любых химических элементов) в общем случае больше среднего геометрического значения гомоатомных связей A—A и B—B.



В настоящее время для определения электроотрицательностей атомов существует много различных методов, результаты которых хорошо согласуются друг с другом, за исключением относительно небольших различий, и во всяком случае внутренне непротиворечивы.

Первая и широко известная шкала относительных атомных электроотрицательностей Полинга охватывает значения от 0,7 для атомов франция до 4,0 для атомов фтора. Фтор — наиболее электроотрицательный элемент, за ним следует кислород (3,5) и далее азот и хлор (3,0). Активные щелочные и щёлочноземельные металлы имеют наименьшие значения электроотрицательности, лежащие в интервале 0,7—1,2, а галогены — наибольшие значения, находящиеся в интервале 4,0—2,5. Электроотрицательность типичных неметаллов находится в середине общего интервала значений и, как правило, близка к 2 или немного больше 2. Электроотрицательность водорода принята равной 2,1. Для большинства переходных металлов значения электроотрицательности лежат в интервале 1,5—2,0. Близки к 2,0 значения электроотрицательностей тяжёлых элементов главных подгрупп. Существует также несколько других шкал электроотрицательности, в основу которых положены разные свойства веществ. Но относительное расположение элементов в них примерно одинаково.

Теоретическое определение электроотрицательности было предложено американским физиком Р. Малликеном. Исходя из очевидного положения о том, что способность атома в молекуле притягивать к себе электронный заряд зависит от энергии ионизации атома и его сродства к электрону, Р. Малликен ввёл представление об электроотрицательности атома А как о средней величине энергии связи наружных электронов при ионизации валентных состояний (например, от А− до А+) и на этой основе предложил очень простое соотношение для электроотрицательности атома:

где J1A и εA — соответственно энергия ионизации атома и его сродство к электрону.

Помимо шкалы Малликена, описанной выше, существует более 20-ти различных других шкал электроотрицательности, среди которых шкала Л. Полинга (основана на энергии связи при образовании сложного вещества из простых), шкала Олреда-Рохова (основана на электростатической силе, действующей на внешний электрон) и др.

Строго говоря, элементу нельзя приписать постоянную электроотрицательность. Электроотрицательность атома зависит от многих факторов, в частности, от валентного состояния атома, формальной степени окисления, координационного числа, природы лигандов, составляющих окружение атома в молекулярной системе, и от некоторых других. В последнее время все чаще для характеристики электроотрицательности используют так называемую орбитальную электроотрицательность, зависящую от типа атомной орбитали, участвующей в образовании связи, и от её электронной заселённости, т. е. от того, занята атомная орбиталь неподелённой электронной парой, однократно заселена неспаренным электроном или является вакантной. Но, несмотря на известные трудности в интерпретации и определении электроотрицательности, она всегда остаётся необходимой для качественного описания и предсказания природы связей в молекулярной системе, включая энергию связи, распределение электронного заряда и степень ионности, силовую постоянную и т. д.

В период бурного развития квантовой химии как средства описания молекулярных образований (середина и вторая половина XX века) плодотворной оказался подход Л.Полинга, который в числе прочих исследований ввел собственную шкалу электроотрицательностей, в которой из «стандартных» элементов максимальную имеет фтор ( ), а минимальную — цезий ( ). Степень ионности связи, то есть вклад структуры, при которой более электроотрицательный атом полностью «забирает» себе валентные электроны, в общую резонансную «картину», в этой теории определяется как

где — разность электроотрицетельностей образующих связь атомов.

Одним из наиболее развитых в настоящее время подходов является подход Сандерсона. В основу этого подхода легла идея выравнивания электроотрицательностей атомов при образовании химической связи между ними. В многочисленных исследованиях были найдены зависимости между электроотрицательностями Сандерсона и важнейшими физико-химическими свойствами неорганических соединений подавляющего большинства элементов периодической таблицы.[1] Очень плодотворной оказалась и модификация метода Сандерсона, основанная на перераспределении электроотрицательности между атомами молекулы для органических соединений.[2][3][4]


7966077936188801.html
7966121994066155.html
    PR.RU™